如图,抛物线y=ax2+bx+c的图象过点A(-1,0)、B(3,0)、C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在一点P,使得ΔPAC的周长最小,若存在,请求出点P的坐标及ΔPAC的周长;若不存在,请说明理由;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得SΔPAM=SΔPAC?若存在,请求出点M的坐标;若不存在,请说明理由.
已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把弧 CA分为三等份,连接MC并延长交y轴于点D(0,3)(1)求证:△OMD≌△BAO;(2)若直线把⊙M的周长和△OMD面积均分为相等的两部份,求该直线的解析式.
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
如图,直角三角形ABC中,∠C=90°,∠A=30°,点O在斜边AB上,半径为2的⊙O过点B,且切AC边于点D,交BC边于点E,求:(1)弧DE的长; (结果保留π) (2)由线段CD,CE及弧DE围成的阴影部分的面积。(结果保留π和根号)
抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求抛物线的解析式;(2)求抛物线与x轴的交点坐标;(3)画出这条抛物线大致图象;(4)根据图象回答:①当x取什么值时,y>0 ?②当x取什么值时,y的值随x的增大而减小?
如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,),(1)试确定这两个函数的表达式;(2)求出这两个函数图像的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.