某汽车销售公司一位销售经理1~5月份的汽车销售统计图如下:
(1)已知1月的销售量是2月的销售量的3.5倍,则1月的销售量为 辆.在图2中,2月的销售量所对应的扇形的圆心角大小为 .
(2)补全图1中销售量折线统计图.
(3)已知4月份销售的车中有3辆国产车和2辆合资车,国产车分别用G1、G2、G3表示,合资车分别用H1、H2表示,现从这5辆车中随机抽取两辆车参加公司的回馈活动,请用列举法(画树状图或列表)求出“抽到的两辆车都是国产车“的概率.
先化简,再求值:6x2-(2x+1)(3x-2)+(x+3)(x-3),其中
因式分解 (1)﹣2a3+12a2﹣18ª (2)(x2+4)2-16x2 (3)(x2-2x)2+2(x2-2x)+1
计算 (1)(2)(-2x)3-(-x)(3x)2(3)
一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形. (1)判断与操作:如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由. (2)探究与计算:已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值. (3)归纳与拓展:已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,则b:c=___________________________________________(写出所有值).
D、E分别是△ABC的边AB、AC的中点.O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G. (1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形; (2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在画2中补全图形,并说明理由.