用边长为12cm的正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形. (1)每个盒子需 个长方形, 个等边三角形; (2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4侧面5个底面. 现有19张硬纸板,裁剪时x张用A方法,其余用B方法. ①用x的代数式分别表示裁剪出的侧面和底面的个数; ②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
已知:写成的形式,求出图像与轴的交点,直接写出原抛物线与轴翻折后图像的解析式为____________________________.
解方程:
对称轴为直线的抛物线y=x2 + bx + c, 与轴相交于A 、B,两点,其中点A的坐标为(3,0). (1)求点的坐标. (2)点是抛物线与轴的交点,点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.
某工厂的大门是一抛物线形水泥建筑物,如图2210,大门地面宽AB=4米,顶部C离地面的高度为4.4米,现在一辆装满货物的汽车欲通过大门,货物顶部离地面的高度为2.8米,装货宽度为2.4米,请通过计算,判断这辆汽车能否顺利通过大门?
抛物线。 (1)求顶点坐标,对称轴; (2)取何值时,随的增大而减小? (3)取何值时,=0;取何值时,>0;取何值时,<0 。