某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
已知函数(),(). (Ⅰ)若函数在处的切线方程为,求实数与的值; (Ⅱ)求的单调减区间; (Ⅲ)当时,若对任意的,存在,使得,求实数的取值范围.
如图,为某湖中观光岛屿,是沿湖岸南北方向道路,为停车场,,某旅游团浏览完岛屿后,乘游船回停车场,已知游船以的速度沿方位角的 方向行驶,.游船离开观光岛屿分钟后,因事耽搁没有来得及登上游船的游客甲,为了及时 赶到停车地点与旅游团会合,立即决定租用小艇先到达湖岸南北大道处,然后乘景区电动出租车到 停车场处(假设游客甲到达湖滨大道后幸运地一点未耽搁便乘上了电动出租车).游客甲乘小艇行驶的 方位角是,电动出租车的速度为. (Ⅰ)设,问小艇的速度为多少时,游客甲才能与游船同时到达点; (Ⅱ)设小艇速度为,请你替该游客设计小艇行驶的方位角,当角的余弦值是多少时,游客甲能按计划以最短时间到达.
如图,矩形中,,,、分别在线段和上,∥,将矩形沿折起,记折起后的矩形为,且平面平面. (Ⅰ)求证:∥平面; (Ⅱ)求四面体体积的最大值.
如图所示,、分别是单位圆与轴、轴正半轴的交点,点在单位圆上,(),点坐标为,平行四边形的面积为. (Ⅰ)求的最大值; (Ⅱ)若∥,求.
(本小题满分10分)选修4-5:不等式选讲 设都是正实数,求证: (Ⅰ) (Ⅱ)