某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
设是方程的两个实根,则的最小值是多少?
已知,若求的范围。
已知函数.设数列满足,,数列满足,. (Ⅰ)用数学归纳法证明; (Ⅱ)证明.
已知抛物线的焦点为是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于.过作垂直于轴,垂足为,的中点为.(1) 求抛物线方程;(2) 过作,垂足为,求点的坐标;(3) 以为圆心,为半径作圆.当是轴上一动点时,讨论直线与圆的位置关系.
已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.