已知椭圆的离心率为,右焦点为(,0),过点斜率为1的直线与椭圆交于两点.(1)求椭圆的方程;(2)求弦的长.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求的值;(2) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.(利润=销售额-成本)
椭圆方程为,过点的直线交椭圆于为坐标原点,点满足,当绕点旋转时,求动点的轨迹方程.
设关于的不等式,的解集是,函数 的定义域为.若“或”为真,“且”为假,求的取值范围.
已知函数(且).(1)求函数的单调区间;(2)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”. 试问:函数是否存在“中值相依切线”,请说明理由.
已知椭圆C: (a>b>0)的离心率为,且经过点P(1,)。(1)求椭圆C的方程;(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点? (3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。