设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:①当x∈R时,f(x)的最小值为0,且f(x﹣1)=f(﹣x﹣1)恒成立;②当x∈(0,5)时,x≤f(x)≤2|x﹣1|+1恒成立.(1)求f(1)的值;(2)求f(x)的解析式;(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有f(x+t)≤x成立.
已知定义域为R的函数满足 (I)若,求;又若,求; (II)设有且仅有一个实数,使得,求函数的解析表达式
已知a>0,函数f(x)=ax-bx2, (1)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2; (2)当b>1时,证明:对任意x∈[0, 1], |f(x)|≤1的充要条件是:b-1≤a≤2; (3)当0<b≤1时,讨论:对任意x∈[0, 1], |f(x)|≤1的充要条件。
设集合,.若,求实数的取值范围.
在轴同侧的两个圆:动圆和圆外切(),且动圆与轴相切,求 (1)动圆的圆心轨迹方程L; (2)若直线与曲线L有且仅有一个公共点,求之值。
已知抛物线,其焦点为F,一条过焦点F,倾斜角为的直线交抛物线于A,B两点,连接AO(O为坐标原点),交准线于点,连接BO,交准线于点,求四边形的面积.