先化简,再求值:,其中
已知函数(为常数). (1)证明:无论m取何值,该函数与轴总有两个交点; (2)设函数的两交点的横坐标分别为和,且,求此函数的解析式.
某旅行社为了吸引游客组团去旅游,推出了如下收费标准: (1)若A单位组织该单位25名员工去旅游,需支付给该旅行社旅游费用_____元。 (2)若B单位共支付给该旅行社旅游费用27000元,请问B单位共有多少名员工去旅游?
知识迁移 当且时,因为≥,所以≥,从而≥(当时取等号).记函数,由上述结论可知:当时,该函数有最小值为. 直接应用 已知函数与函数,则当 时,取得最小值为 . 变形应用 已知函数与函数,求的最小值,并指出取得该最小值时相应的的值. 实际应用 已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
已知关于的一元二次方程的两个实数根、的值分别是□ABCD的两边AB、AD的长. (1)如果,试求□ABCD的周长; (2)当为何值时,□ABCD是菱形?
计算: (1)2sin45°+ (2)