某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.(1)该种干果的第一次进价是每千克多少元?(2)如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完,超市销售这种干果共盈利多少元?
如图,已知:△ABC为等边三角形,D、F分别为射线BC、射线AB边上的点,BD=AF,以AD为边作等边△ADE. (1)如图①所示,当点D在线段BC上时: ①试说明:△ACD≌△CBF;②判断四边形CDEF的形状,并说明理由; (2)如图②所示,当点D在BC的延长线上时,判断四边形CDEF的形状,并说明理由. (3)当点D在射线BC上移动到何处时,∠DEF=30°,并说明理由.
如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.
如图,在▱ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF. (1)试说明△CEF是等腰三角形; (2)△CEF的哪两边之和恰好是▱ABCD的周长?并说明理由.
如图,已知 AB∥DC,E是BC的中点,AE,DC的延长线交于点F; (1)求证:△ABE≌△FCE; (2)连接AC,BF.则四边形ABFC是什么特殊的四边形?请说明理由.
如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.