直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线 (x<0)交于点A(-1,n). (1)求直线与双曲线的解析式; (2)连接OA,求∠OAB的正弦值;(提示:过O点作OM垂直AC) (3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.
某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按 A , B , C , D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:
(说明: A 等级:135分 − 150 分 B 等级:120分 − 135 分, C 等级:90分 − 120 分, D 等级:0分 − 90 分)
(1)此次抽查的学生人数为 ;
(2)把条形统计图和扇形统计图补充完整;
(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.
如图,点 E 正方形 ABCD 外一点,点 F 是线段 AE 上一点, ΔEBF 是等腰直角三角形,其中 ∠ EBF = 90 ° ,连接 CE 、 CF .
(1)求证: ΔABF ≅ ΔCBE ;
(2)判断 ΔCEF 的形状,并说明理由.
教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).
(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;
(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.
如图,已知抛物线 y = x 2 + bx 与直线 y = 2 x + 4 交于 A ( a , 8 ) 、 B 两点,点 P 是抛物线上 A 、 B 之间的一个动点,过点 P 分别作 x 轴、 y 轴的平行线与直线 AB 交于点 C 和点 E .
(1)求抛物线的解析式;
(2)若 C 为 AB 中点,求 PC 的长;
(3)如图,以 PC , PE 为边构造矩形 PCDE ,设点 D 的坐标为 ( m , n ) ,请求出 m , n 之间的关系式.
如图,在 ΔABC 中, D 为 AC 上一点,且 CD = CB ,以 BC 为直径作 ⊙ O ,交 BD 于点 E ,连接 CE ,过 D 作 DF ⊥ AB 于点 F , ∠ BCD = 2 ∠ ABD .
(1)求证: AB 是 ⊙ O 的切线;
(2)若 ∠ A = 60 ° , DF = 3 ,求 ⊙ O 的直径 BC 的长.