已知直线与椭圆相交于两个不同的点,记与轴的交点为.(Ⅰ)若,且,求实数的值;(Ⅱ)若,求面积的最大值,及此时椭圆的方程.
已知曲线:,曲线:.曲线的左顶点恰为曲线的左焦点. (Ⅰ)求的值; (Ⅱ)设为曲线上一点,过点作直线交曲线于两点.直线交曲线于两点.若为中点, ①求证:直线的方程为 ; ②求四边形的面积.
浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5.在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响). (Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率; (Ⅱ)求某队可获得奖品的概率.
(本小题满分12分)如图,在中,已知在上,且又平面. (Ⅰ)求证:平面; (Ⅱ)求证:⊥平面.
(本小题满分12分)在中,内角的对边分别为,已知,且成等比数列. (Ⅰ)求的值; (Ⅱ)若求的值.
(本大题满分10分)选修4-5:不等式选讲 已知函数 (Ⅰ)若的解集为,求实数的值; (Ⅱ)当且时,解关于的不等式