设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.(Ⅰ)求应从这三个协会中分别抽取的运动员人数;(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.(ⅰ)用所给编号列出所有可能的结果;(ⅱ)设为事件“编号为的两名运动员至少有一人被抽到”,求事件发生的概率.
(本小题满分12分)如图,矩形ABCD,PA⊥平面ABCD,M、N、R分别是AB、PC、CD的中点。①求证:直线AR∥平面PMC;②求证:直线MN⊥直线AB。
选修4-5:不等式选讲已知函数(I)求不等式的解集;(II)若关于x的不等式恒成立,求实数的取值范围。
选修4—4:坐标系与参数方程直线(极轴与x轴的非负半轴重合,且单位长度相同)。(1)求圆心C到直线的距离;(2)若直线被圆C截的弦长为的值。
选修4-1:几何证明选讲如图,已知点C在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线并交AE于点F、交AB于D点,则∠ADF=?
(本小题满分12分)设函数(1)当时,求的最大值;(2)令,(0≤3),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.