如图,在直角坐标系中,直线AB交轴于A(2,0),交轴负半轴于B(0,-10),C为x轴正半轴上一点,且OC=5OA.(1)求△ABC的面积.(2)延长BA到P(自己补全图形),使得PA=AB,过点P作PM⊥OC于M,求P点的坐标.(3)如图,D是第三象限内一动点,直线BE⊥CD于E, OF⊥OD交BE延长线于F.当D点运动时,的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.
已知抛物线的顶点在抛物线上,且抛物线在轴上截得的线段长是,求和的值.
下表给出了代数式与的一些对应值:
(1)请在表内的空格中填入适当的数;(2)设,则当取何值时,?(3)请说明经过怎样平移函数的图象得到函数的图象.
抛物线过点,顶点为M点.(1)求该抛物线的解析式;(2)试判断抛物线上是否存在一点P,使∠POM=90˚.若不存在,说明理由;若存在,求出P点的坐标;(3)试判断抛物线上是否存在一点K,使∠OMK=90˚,说明理由.
如图,为抛物线上对称轴右侧的一点,且点在轴上方,过点作垂直轴于点,垂直轴于点,得到矩形.若,求矩形的面积.
如图,已知抛物线经过,三点,且与轴的另一个交点为.(1)求抛物线的解析式;(2)用配方法求抛物线的顶点的坐标和对称轴;(3)求四边形的面积.