(1)画出△ABC关于y轴的对称图形,并写出的顶点坐标;(2)在x轴上求作点P,使PA+PC的值最小.
如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长.
如图,四边形是的内接矩形,如果的高线长,底边长,设,, (1)求关于的函数关系式; (2)当为何值时, 四边形的面积最大?最大面积是多少?
如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,,OB= 4,OE=2. (1)求直线AB和反比例函数的解析式; (2)求△OCD的面积; (3)直接写出使一次函数值小于反比例函数值的的取值范围.
为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)
如图,在平面直角坐标系中,点、B(2,0)、O(0,0),反比例函数图象经过点A. (1)求k的值; (2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?