已知,若存在互不相等的正整数…,使得…同时小于,则记为满足条件的的最大值.(1)求的值;(2)对于给定的正整数,(ⅰ)当时,求的解析式;(ⅱ)当时,求的解析式.
(本小题满分10分)选修4-1:几何证明选讲 如图,四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,,求的值; (2)若,证明:.
已知、为椭圆的左、右焦点,且点在椭圆上. (1)求椭圆的方程; (2)过的直线交椭圆于两点,则的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号; (2)若函数在区间上有最大值为,求的值.
如图,在三棱锥中,,,为的中点,. (1)求证:平面平面; (2)如果三棱锥的体积为,求.
2014年索契冬季奥运会,已经在2014年02月07日至02月23日在俄罗斯联邦索契市举行.该市为了缓解交通压力,大力发展公共交通.为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的45名候车乘客中随机抽取15人,按照他们的候车时间(单位:分钟)作为样本分成6组,如下表所示: (1)估计这45名乘客中候车时间少于12分钟的人数; (2)若从上表第四、五组的5人中随机抽取2人做进一步的问卷调查,求抽到的2人恰好来自不同组的概率.