如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.
在如图的正方形网格中,每一个小正方形的边长为1.格点三角形 ABC (顶点是网格线交点的三角形)的顶点 A 、 C 的坐标分别是 ( − 4 , 6 ) , ( − 1 , 4 ) .
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出 ΔABC 关于 x 轴对称的△ A 1 B 1 C 1 ;
(3)请在 y 轴上求作一点 P ,使△ P B 1 C 的周长最小,并写出点 P 的坐标.
如图,已知二次函数 y = a x 2 + bx + c ( a ≠ 0 ) 的图象经过 A ( − 1 , 0 ) 、 B ( 4 , 0 ) 、 C ( 0 , 2 ) 三点.
(1)求该二次函数的解析式;
(2)点 D 是该二次函数图象上的一点,且满足 ∠ DBA = ∠ CAO ( O 是坐标原点),求点 D 的坐标;
(3)点 P 是该二次函数图象上位于第一象限上的一动点,连接 PA 分别交 BC 、 y 轴于点 E 、 F ,若 ΔPEB 、 ΔCEF 的面积分别为 S 1 、 S 2 ,求 S 1 − S 2 的最大值.
如图, ⊙ O 与 Rt Δ ABC 的直角边 AC 和斜边 AB 分别相切于点 C 、 D ,与边 BC 相交于点 F , OA 与 CD 相交于点 E ,连接 FE 并延长交 AC 边于点 G .
(1)求证: DF / / AO ;
(2)若 AC = 6 , AB = 10 ,求 CG 的长.
一次函数 y = kx + b ( k ≠ 0 ) 的图象经过点 A ( 2 , − 6 ) ,且与反比例函数 y = − 12 x 的图象交于点 B ( a , 4 ) .
(1)求一次函数的解析式;
(2)将直线 AB 向上平移10个单位后得到直线 l : y 1 = k 1 x + b 1 ( k 1 ≠ 0 ) , l 与反比例函数 y 2 = 6 x 的图象相交,求使 y 1 < y 2 成立的 x 的取值范围.
如图,海中一渔船在 A 处且与小岛 C 相距 70 nmile ,若该渔船由西向东航行 30 nmile 到达 B 处,此时测得小岛 C 位于 B 的北偏东 30 ° 方向上;求该渔船此时与小岛 C 之间的距离.