如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(-5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.
甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场每次购物累计超过100元后,超出100的部分按折收费;在乙商场每次购物累计超过50元后,超过50元的部分按95%收费,若王老师有次到甲商场购物150元,实际支付145元.(1)求的值;(2)请你分析顾客到哪家商场购物更合算?
(1)请在横线上填写合适的内容,完成下面的证明:如图1,AB∥CD,求证:∠B+∠D=∠BED.证明:过点E引一条直线EF∥AB,∴∠B=∠BEF,(___________________).∵AB∥CD,EF∥AB∴EF∥CD,(_______________________________).∴∠D=________,(_____________________).∴∠B+∠D=∠BEF+∠FED即:∠B+∠D=∠BED.(2)如图2,AB∥CD,请写出∠B+∠BED+∠D=360°的推理过程.(3)如图3,AB∥CD,请直接写出结果:∠B+∠BEF+∠EFD+∠D=____________.
在一次知识竞赛中,甲、乙两人进入到“必答题”环节.规则是:两人轮流答题,每人都要回答20道题,每道题回答正确得分,回答错误或放弃回答扣分.当甲、乙两人恰好都答完12道题时,甲答对了9道题,得分为39分;乙答对了10道题,得分为46分.(1)求和的值;(2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少道题才能顺利晋级?
某中学组织中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△ABC.(1)在图中画出△ABC;(2)写出点A、B、C的坐标;(3)在轴上是否存在一点P,使得△PBC与△ABC面积相等?若存在,写出点P的坐标;若不存在,说明理由.