设数列的前项和为,且首项.(Ⅰ)求证:是等比数列;(Ⅱ)若为递增数列,求的取值范围.
(本小题满分13分)已知数列满足,且当时,,令.(Ⅰ)写出的所有可能的值;(Ⅱ)求的最大值;(Ⅲ)是否存在数列,使得?若存在,求出数列;若不存在,说明理由.
(本小题满分13分)在平面直角坐标系中,已知点,,为动点,且直线与直线的斜率之积为.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设过点的直线与曲线相交于不同的两点,.若点在轴上,且<满足,求点的纵坐标的取值范围.
(本小题满分14分)已知函数.(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;(Ⅱ)讨论函数的单调性;(Ⅲ)当时,记函数的最小值为,求证:.
(本小题满分14分)在如图所示的几何体中,四边形为正方形,平面,,.(Ⅰ)若点在线段上,且满足,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值.
(本小题满分13分)一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;(Ⅱ)求取出的3个球中恰有2个球编号相同的概率;(Ⅲ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望.