选修4-1:几何证明选讲 如图O是等腰三角形ABC内一点,圆O与△ABC的底边BC交于M,N两点,与底边上的高交于点G,且与AB,AC分别相切于E,F两点. (Ⅰ)证明; (Ⅱ)若AG等于圆O半径,且 ,求四边形EBCF的面积.
已知数列的前项和为,且,数列满足,且点在直线上.(1)求数列、的通项公式;(2)求数列的前项和.
已知△ABC中,A,B,C的对边分别为a,b,c,且.(1)若,求边c的大小;(2)若a=2c,求△ABC的面积.
已知函数(I)当a=1时,求函数f(x)的最小值;(II)当a≤0时,讨论函数f(x)的单调性;(III)是否存在实数a,对任意的x1,x2(0,+∞),且x1≠x2,都有恒成立.若存在,求出a的取值范围;若不存在,说明理由.
已知各项都不相等的等差数列的前6项和为60,且为和的等比中项.( I ) 求数列的通项公式;(II) 若数列满足,且,求数列的前项和.
已知数列的首项,且满足(1)设,求证:数列是等差数列,并求数列的通项公式;(2)设,求数列的前n项和