如图,已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,DAB,AB//CD,ADAFCD2,AB4. (Ⅰ)求证:AC平面BCE;(Ⅱ)求三棱锥ACDE的体积;(Ⅲ)线段EF上是否存在一点M,使得BMCE ?若存在,确定M点的位置;若不存在,请说明理由.
若,求值: (1) ; (2)
已知集合 (1)若,求,; (2)若,求实数取值的范围.
若函数,当x=2时,函数f(x)有极值. (1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围。
某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间大体满足关系:(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品),已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;(2)当日产量为多少时,可获得最大利润?
已知是椭圆的两个焦点,是椭圆上的第一象限内的点,且.(1)求的周长;(2)求点的坐标.