(本小题满分12分)已知以原点为中心,F(,0)为右焦点的椭圆C,过点F垂直于轴的弦AB长为4.(1).求椭圆C的标准方程.(2).设M、N为椭圆C上的两动点,且,点P为椭圆C的右准线与轴的交点,求的取值范围.
设函数, (Ⅰ)求的定义域; (Ⅱ)求的单调增区间和减区间; (Ⅲ)求所有实数,使对恒成立.
)如图,在正三棱柱ABC—A1B1C1中,AB=AA1,点D是A1B1的中点,点F是AB的中点,点E在A1C1上,且DE⊥AE。 (1)证明B1F//平面ADE; (2)证明平面ABC1⊥平面C1DF; (3)求直线AD和平面ABC1所成角的正弦值。
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例; (2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人的比例?说明理由.
试比较下列各式的大小(不写过程) (1)与 (2)与 通过上式请你推测出与且n的大小,并用分析法加以证明。
假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:
若由资料可知y对x呈线性相关关系。试求: (1)线性回归方程; (2)估计使用年限为10年时,维修费用是多少?