(本小题满分12分)已知以原点为中心,F(,0)为右焦点的椭圆C,过点F垂直于轴的弦AB长为4.(1).求椭圆C的标准方程.(2).设M、N为椭圆C上的两动点,且,点P为椭圆C的右准线与轴的交点,求的取值范围.
如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中。(1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线;(2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。
已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若直线与(Ⅰ)中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求△FOH的面积的取值范围。
以O为原点,所在直线为轴,建立如 所示的坐标系。设,点F的坐标为,,点G的坐标为。(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。
已知双曲线的左右两个焦点分别为,点P在双曲线右支上.(Ⅰ)若当点P的坐标为时,,求双曲线的方程;(Ⅱ)若,求双曲线离心率的最值,并写出此时双曲线的渐进线方程.
在平面直角坐标系内有两个定点和动点P,坐标分别为 、,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为,(1)求曲线C的方程;(2)求的值。