已知三点、、.(1)求以,为焦点且过点P的椭圆的标准方程;(2)设点P、、关于直线y=x的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程.
(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD为菱形,PD=AD,∠DAB="60°," PD⊥底面ABCD.(1)求作平面PAD与平面PBC的交线,并加以证明; (2)求PA与平面PBC所成角的正弦值;(3)求平面PAD与平面PBC所成锐二面角的正切值。
(本小题满分12分)已知圆的圆心为原点,且与直线相切。(1)求圆的方程;(2)点在直线上,过点引圆的两条切线,切点为 ,求证:直线恒过定点。
(本小题满分12分)已知的顶点,边上的中线所在的直线方程为,边上的高所在直线的方程为.(1)求的顶点、的坐标;(2)若圆经过、且与直线相切于点(-3,0),求圆的方程.
.本小题满分12分)如图(1),边长为的正方形中,分别为上的点,且,现沿把剪切、拼接成如图(2)的图形,再将沿折起,使三点重合于点。(1)求证:;(2)求四面体体积的最大值。
.(本小题满分10分)已知不等式的解集为(1)求、的值;(2)若函数在区间上递增,求关于的不等式的解集。