已知,m是是实常数.(1)当m=1时,写出函数的值域;(2)当m=0时,判断函数的奇偶性,并给出证明;(3)若是奇函数,不等式对恒成立,求a的取值范围.
椭圆的离心率为,且经过点过坐标原点的直线与均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点 (1)求椭圆M的方程; (2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD垂直于AB和DC,侧棱SA底面ABCD,且SA=2,AD=DC=1, 点E在SD上,且 (1)证明:平面; (2)求三棱锥的体积
某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系为:,试估计在本年度内随机抽取一天,该天经济损失S大于200元且不超过600元的概率; (2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关? 附:
三角形ABC中,内角A、B、C所对的边a、b、c成公比小于1的等比数列,且.(1)求内角B的余弦值;(2)若,求三角形的面积.
设函数 (1)求不等式的解集; (2)若关于的不等式在上无解,求实数的取值范围