选修4-4:坐标系与参数方程选讲已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的取值范围.
(本小题满分14分)给定正奇数,数列:是1,2,…,的一个排列,定义E(,…,)为数列:,,…,的位差和. (1)当时,求数列:1,3,4,2,5的位差和; (2)若位差和E(,,…,)=4,求满足条件的数列:,,…,的个数; (3)若位差和,求满足条件的数列:的个数.
(本小题满分13分)已知定义在上的函数,. (1)求证:存在唯一的零点,且零点属于(3,4); (2)若且对任意的恒成立,求的最大值.
(本小题满分14分)如图,已知椭圆的左焦点为F(,0),过点M(-3,0)作一条斜率大于0的直线与椭圆W交于不同的两点A、B,延长BF交椭圆W于点C. (1)求椭圆W的离心率; (2)若∠MAC=60°,求直线的斜率.
(本小题满分13分)设集合,从S的所有非空子集中,等可能地取出一个. (1)设,若,则,就称子集A满足性质,求所取出的非空子集满足性质的概率; (2)所取出的非空子集的最大元素为,求的分布列和数学期望.
(本小题满分13分)如图,四棱锥中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2. (1)求三棱锥的外接球的体积; (2)求二面角与二面角的正弦值之比.