如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;② 点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.
如图(1),把大小为4×4的正方形方格图形分割成两个全等图形,请在图(2)中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.
(本题8分)我市出租车收费标准如下:3公里以内(含3公里)为起步价收费10元,超过3公里的部分每公里收费2元.超过起步里程10公里以上的部分加收50%,即每公里3元.(不足1公里以1公里计算) (1)小明一次乘坐出租车行驶4.3公里应付车费多少元? (2)若小明乘坐出租车行驶15.2公里,问应付车费多少元? (3)小明家距离学校13.3千米,周末小明身边带了32元钱,则小明从学校坐出租车到家的钱够吗?如果够,还剩多少钱?如果不够他至少要先走多少公里路?
(本题8分)(1)观察下列算式: 1=12 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42…… 按规律填空:①1+3+5+7+9= ;②1+3+5+…+2005= (2)已知a、b互为相反数,c、d互为倒数,求的值;
在数轴上表示下列各数,并比较它们的大小. -2,0,1,1.5,.
已知二次函数y=+4x+k-1. (1)若抛物线与x轴有两个不同的交点,求k的取值范围; (2)若抛物线的顶点在x轴上,求k的值.