已知:如图,点B、F、C、E在一条直线上,∠B=∠E,∠ACB=∠DFE,且BF=EC.求证:△ABC≌△DEF.
为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的 10 % 进行测试,将这些学生的测试成绩 ( x ) 分为四个等级:优秀 85 ⩽ x ⩽ 100 ;良好 75 ⩽ x < 85 ;及格 60 ⩽ x < 75 ;不及格 0 ⩽ x < 60 ,并绘制成如图两幅统计图.
根据以上信息,解答下列问题:
(1)在抽取的学生中不及格人数所占的百分比是 ;
(2)计算所抽取学生测试成绩的平均分;
(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.
如图,四边形 ABCD 是平行四边形, DE / / BF ,且分别交对角线 AC 于点 E , F ,连接 BE , DF .
(1)求证: AE = CF ;
(2)若 BE = DE ,求证:四边形 EBFD 为菱形.
先化简,再求值: ( x - 2 ) 2 - 4 x ( x - 1 ) + ( 2 x + 1 ) ( 2 x - 1 ) ,其中 x = - 2 .
计算: ( - 1 ) 2 + | - 2 | + ( π - 3 ) 0 - 4 .
已知点 A ( 1 , 0 ) 是抛物线 y = a x 2 + bx + m ( a , b , m 为常数, a ≠ 0 , m < 0 ) 与 x 轴的一个交点.
(Ⅰ)当 a = 1 , m = - 3 时,求该抛物线的顶点坐标;
(Ⅱ)若抛物线与 x 轴的另一个交点为 M ( m , 0 ) ,与 y 轴的交点为 C ,过点 C 作直线 l 平行于 x 轴, E 是直线 l 上的动点, F 是 y 轴上的动点, EF = 2 2 .
①当点 E 落在抛物线上(不与点 C 重合),且 AE = EF 时,求点 F 的坐标;
②取 EF 的中点 N ,当 m 为何值时, MN 的最小值是 2 2 ?