一出租车沿公路左右直线行驶,规定:向左为正,向右为负,2015年11月23日该车从A地出发后到收工回家所走的路线如下:(单位:千米)+8,﹣9, +4,+7,﹣2,﹣10,+18,﹣3,+7,+5.(1)问收工时离出发点A多少千米?(2)若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?
如图,一根长2a的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为点P,若木棍A端沿墙下滑,且B端沿地面向右滑行. (1)试判断木棍滑动过程中,点P到点O的距离是否变化?并简述理由. (2)在木棍滑动过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求面积的最大值.
已知:如图,四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF; (2)若∠EOD=30°,求CE的长.
如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD. 求证:四边形ABCD是平行四边形.
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连接BE,DF. (1)求证:△DOE≌△BOF; (2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.