已知:如图,AB=AD,∠D=∠B,∠1=∠2,求证:(1)△ADE≌△ABC;(2)∠DEB=∠2.
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同. (1)求摸出1个球是白球的概率; (2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表); (3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为.求n的值.
学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本. (1)甲、乙两种图书的单价分别为多少元? (2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B. (1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形; (2)填空: ①当DP=cm时,四边形AOBD是菱形; ②当DP=cm时,四边形AOBP是正方形.
请将式子:化简后,再选择一个合适的x的值代入求值.
(1)计算:(-2011)0+()-1+|-2|-2cos60°; (2)解方程:(2x-1)2=x(3x+2)-7.