某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购1件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设销售商一次订购x件,服装的实际出厂单价为p元,写出函数p=f(x)的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?最大利润是多少?
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.(l)求证:EG∥;(2)求二面角的余弦值;(3)求正方体被平面所截得的几何体的体积.
下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.(l)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
已知函数,(l)求函数的最小正周期;(2)当时,求函数f(x)的单调区间。
已知函数,其中.(1) 当时,求曲线在点处的切线方程;(2) 求函数的单调区间及在上的最大值.
长方形中,,.以的中点为坐标原点,建立如图所示的直角坐标系.(1) 求以、为焦点,且过、两点的椭圆的标准方程;(2) 过点的直线交(1)中椭圆于两点,是否存在直线,使得以线段为直径的圆恰好过坐标原点?若存在,求出直线的方程;若不存在,请说明理由.