某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)求两班比赛成绩的中位数.(3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的由.
某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件。 (1)求售价为70元时的销售量及销售利润; (2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润; (3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?
如图,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C. (1)点A的坐标为点B的坐标为,点C的坐标为; (2)设抛物线y=x2-2x-3的顶点坐标为M,求四边形ABMC的面积.
如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC. (1)求证:四边形ABFC是平行四边形; (2)如果DE2=BE·CE,求证四边形ABFC是矩形.
某市一楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产新政策的出台,大多购房者持币观望.为了加快资金周转,该楼盘开发商将价格下调两次后,决定以每平方米3840元的均价开盘销售,求平均每次下调的百分率.
已知:△ABC(如图), (1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明). (2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.