已知函数在x∈[2,8]时取得最大值2,最小值,求a.
(本小题满分14分)对定义域分别是、的函数、, 规定:函数 已知函数,. (1)求函数的解析式; ⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
(本小题满分13分)已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为. (1)求椭圆的方程。 (2)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
(本小题满分12分) 已知等差数列满足:,.的前n项和为. (1)求及; (2)若,(),求数列的前项和.
(本小题满分12分) 向量 (1)若a为任意实数,求g(x)的最小正周期; (2)若g(x)在[o,)上的最大值与最小值之和为7,求a的值,
(本小题满分12分) 某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格. (1)求出第4组的频率; (2)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?