已知数列中,(为非零常数),其前n项和满足.(1)求数列的通项公式;(2)若,且,求的值;(3)是否存在实数,使得对任意正整数,数列中满足的最大项恰为第项?若存在,分别求出与的取值范围;若不存在,请说明理由.
(本小题满分12分)己知函数,其中 (1)求函数的单调区间; (2)若直线是曲线y=的切线,求实数的值; (3)设,求在区间上的最大值(其中e为自然对数的底数)
(本小题满分12分)已知圆,若椭圆的右顶点为圆的圆心,离心率为. (1)求椭圆的方程; (2)若存在直线l:y=kx,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆M的半径r的取值范围.
(本小题满分12分)某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等. (1)求表格中与的值; (2)若从被检测的5件B种元件中任取2件,求2件都为正品的概率.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,. (Ⅰ)求证:; (Ⅱ)若,求三棱锥的体积.
(本小题满分12分)设数列{an}的前n项和为Sn,且满足. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足求.