某批发站全年分批购入每台价值为3000 元的电脑共4000台,每批都购入台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用(运费和保管费),请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.
(本小题满分12分) 已知命题:关于的方程有实数解,命题:关于的不等式的解集为,若是真命题,求实数的取值范围.
(本小题满分14分) 已知函数,(). (1)当时,试求函数在上的值域; (2)若直线交的图象于两点,与平行的另一直线与图象切于点. 求证:三点的横坐标成等差数列;
(本小题满分14分) 已知椭圆方程为(),抛物线方程为.过抛物线的焦点作轴的垂线,与抛物线在第一象限的交点为,抛物线在点的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设为椭圆上的动点,由向轴作垂线,垂足为,且直线上一点满足,求点的轨迹方程,并说明轨迹是什么曲线.
(本小题满分14分) 已知等差数列的公差大于0,且是方程的两根,数列的前项的和为,且. (1)求数列,的通项公式; (2)记,求证:; (3)求数列的前项和.
(本小题满分13分) 已知等差数列的公差为,前项和为,且满足, (1)试用表示不等式组,并在给定的坐标系中用阴影画出不等式组表示的平面区域;(2)求的最大值,并指出此时数列的公差的值.