为治疗一种慢性病,某医药研究所研究出一种新型药物,病人按规定的剂量服用该药物后,测得每毫升血液中含药量(毫克)与时间(小时)满足:前1小时内成正比例递增,1小时后按指数型函数(为常数)衰减.如图是病人按规定的剂量服用该药物后,每毫升血液中药物含量随时间变化的曲线.(1)求函数的解析式;(2)已知每毫升血液中含药量不低于0.5毫克时有治疗效果,低于0.5毫克时无治疗效果.求病人一次服药后的有效治疗时间为多少小时?
学校食堂改建一个开水房,计划用电炉或煤炭烧水,但用煤时也要用电鼓风及时排气,用煤烧开水每吨开水费为元,用电炉烧开水每吨开水费为元,,;其中为每吨煤的价格(单位:元),为每百度电的价格(单位:元),如果烧煤时的费用不超过用电炉时的费用,则仍用原备的锅炉烧水,否则就用电炉烧水.(1)如果两种方法烧水费用相同,试将每吨煤的价格表示为每百度电价的函数;(2)如果每百度电价不低于60元,则用煤烧水时每吨煤的最高价格是多少?
如图,江北水城湖畔有一块边长为2a的等边三角形的草坪,在这块草坪内安装灌溉水管DE,使DE把草坪分成面积相等的两部分,D在AB上,E在AC上.①设AD = x(x≥0),DE = y,求y关于x的函数关系式;②为节约成本,应如何安装,才能使灌溉水管DE最短,最短是多少?
平面内给定三个向量=(3,2),=(-1,2)=(4,1).①若∥,求实数k;②设,满足⊥(+),且,求
已知向量=(cosx + sinx,sinx),=(cosx - sinx,2cosx),设f(x)=•. ①求函数f(x)的最小正周期;②当x∈[]时,求函数f(x)的最大值及最小值.
若函数, (1)求函数的解析式; (2)若关于x的方程有三个零点,求实数k的取值范围.