如图1是矩形纸片ABCD连续两次对折展开平铺后的图形,折痕分别为EF,MN,GH.(1)如图2,连接BD,与折痕GH,EF,MN分别交于点S,O,T,求证:OE=OF;(2)如图3,连接ET并延长CD交于点Q,连接FS并延长AB交于点P,连接EP,FQ.求证:四边形EPFQ是菱形;(3)若四边形EPFQ是正方形,则矩形ABCD需满足的条件是______.
先化简,再求值: ,其中;
师生积极为绵阳地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。学校用去捐款96000元采购,正好可供2300人临时居住。(1)求该校采购了多少顶3人小帐篷。多少顶10人大帐篷?(2)学校计划租用甲、乙两种型号的卡车共20辆,将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。如何安排甲、乙两种卡车,可一次性将这批帐篷运往灾区?在哪几种方案?
读理解下列例题,再完成练习.例题:解不等式解:由有理数的乘法方法可知“两数相乘,同号得正”,因此可得① ②解不等式组①得 解不等式组②得所以的解集或 (2)
如图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组从左至右依次记作方程组1、方程组2、方程组3、……方程组n.⑴将方程组1的解填入图中;⑵请依据方程组和它的解的变化规律,将方程组n和它的解直接填入集合图中;⑶若方程组的解是,求的值,并判断该方程组是否符合(2)中的规律?
学生会准备调查全校七年级学生每天(除课间操外)的课外锻炼时间.⑴ 确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最为合理的是 (填“甲”或“乙”或“丙”);⑵ 他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将两幅统计图补充完整;⑶ 若该校七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.(注:图2中相邻两虚线形成的圆心角为30°)