已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.(1)求椭圆标准方程;(2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
(本小题共13分)已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,(Ⅰ)求这个组合体的表面积;(Ⅱ)若组合体的底部几何体记为,其中为正方形.(i)求证:;(ii)设点为棱上一点,求直线与平面所成角的正弦值的取值范围.
(本小题共13分)如图,当甲船位于处时获悉,在其正东方向相距20海里的处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里处的乙船.(Ⅰ)求处于处的乙船和遇险渔船间的距离;(Ⅱ)设乙船沿直线方向前往处救援,其方向与成角,求的值域.
已知二次函数的二次项系数为,且不等式的解集为。(Ⅰ)若方程有两个相等的根,求的解析式;(Ⅱ)若的最大值为正数,求的取值范围。
设数列的前项和为,且,数列为等差数列,公差大于0,且 是方程的两个实根(1) 求数列、的通项公式; (2) 若 ,求数列的前项和
如图(1),△是等腰直角三角形,E、F分别为AC、AB的中点,将△AEF沿EF折起,使在平面BCEF上的射影O恰好为EC的中点,得到图(2)。(Ⅰ)求证:;(Ⅱ)求三棱锥的体积。