已知数列是递增的等比数列,满足,且是.的等差中项,数列满足,其前n项和为,且.(1)求数列,的通项公式;(2)数列的前n项和为,若不等式对一切恒成立,求实数的取值范围.
设函数满足: (其中a、b、c均为常数,且|a|≠|b|),试求.
已知双曲线的中心在坐标原点,焦点在轴上,实轴长是虚轴长的倍,且过点,求双曲线的标准方程及离心率.
已知命题:“若,则二次方程没有实根”.(1)写出命题的否命题;(2)判断命题的否命题的真假,并证明你的结论.
已知函数(1)若求的单调区间及的最小值;(2)若,求的单调区间;(3)试比较)的大小,,并证明你的结论。
定长为3的线段AB两端点A、B分别在轴,轴上滑动,M在线段AB上,且(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线交轨迹C于A、B两点,问:线段上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明。