计算:
如图,已知 AC ⊥ BC ,垂足为 C , AC = 4 , BC = 3 3 ,将线段 AC 绕点 A 按逆时针方向旋转 60 ° ,得到线段 AD ,连接 DC , DB .
(1)线段 DC = ;
(2)求线段 DB 的长度.
(1)解方程: 2 x = 3 x + 1
(2)解不等式组: 2 x > 0 x + 1 2 > 2 x - 1 3 .
(1) ( - 2 ) 2 - ( 1 2 ) - 1 + 2017 0
(2) ( 1 + 4 x - 2 ) ÷ x + 2 x 2 - 4 x + 4 .
如图,已知矩形 ABCD 中, AB = 4 , AD = m ,动点 P 从点 D 出发,在边 DA 上以每秒1个单位的速度向点 A 运动,连接 CP ,作点 D 关于直线 PC 的对称点 E ,设点 P 的运动时间为 t ( s ) .
(1)若 m = 6 ,求当 P , E , B 三点在同一直线上时对应的 t 的值.
(2)已知 m 满足:在动点 P 从点 D 到点 A 的整个运动过程中,有且只有一个时刻 t ,使点 E 到直线 BC 的距离等于3,求所有这样的 m 的取值范围.
如图,以原点 O 为圆心,3为半径的圆与 x 轴分别交于 A , B 两点(点 B 在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 ⊙ O 分别交于 C , D 两点(点 C 在点 D 的上方),直线 AC , DB 交于点 E .若 AC : CE = 1 : 2 .
(1)求点 P 的坐标;
(2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.