如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为. (1)用含的式子表示点E的坐标为 ; (2)当点C与点F不重合时,设△OCF的面积为,求与之间的函数关系式. (3)当为何值时,∠OCD=180°?
.在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=35º,求∠ACF度数.
.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.试猜想线段BC和EF的数量及位置关系,并证明你的猜想
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC和AB的长;(2)证明:∠ACB=90°.
如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(保留作图痕迹,不写作法)
如图,E、F是四边形ABCD的对角线BD上的两点, AE∥CF,AE=CF,BE=DF.求证: ΔADE≌ΔCBF.