已知:如图,△ABC中,∠CAB=90°,AC=AB,点D、E是BC上的两点,且∠DAE=45°,△ADC与△ADF关于直线AD对称. (1)求证:△AEF≌△AEB; (2)∠DFE= °.
如图,A、B是⊙O上的两点,∠AOB=120°,C是的中点,求证四边形OACB是菱形.
已知三个一元一次不等式:2x>4,2x≥x-1,x-3<0.请从中选择你喜欢的两个不等式,组成一个不等式组,求出这不等式组的解集,并将解集在数轴上表示出来.(1)你组成的不等式组是;(2)解:
已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;(3)在(2)的情况下,求四边形ACQD的面积.
(1)如图1,在矩形ABCD中,AB=2BC,M是AB的中点.直接写出∠BMD与∠ADM的倍数关系; (2)如图2,若四边形ABCD是平行四边形, AB=2BC,M是AB的中点,过C作CE⊥AD与AD所在直线交于点E.①若∠A为锐角,则∠BME与∠AEM有怎样的倍数关系,并证明你的结论;②当时,上述结论成立;当 时,上述结论不成立.
已知:关于的方程有两个不相等的实数根.(1)求的取值范围;(2)抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;(3)在(2)的条件下,直线:绕着点旋转得到直线:,设直线与轴交于点,与抛物线交于点(不与点重合),当时,求的取值范围.