如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转900,得到△DOC。抛物线y=ax2+bx+c经过点A、B、C。(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t。①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F。求出当△CEF与△COD相似时点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由。
已知方程组的解是,则a+b的值为 3 .
如图,已知∠MON的边OM上有两点A、B,边ON上有两点C、D,且AB=CD,P为∠MON的平分线上一点.问:(1)△ABP与△PCD是否全等?请说明理由.(2)△ABP与△PCD的面积是否相等?请说明理由.
如图,画一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B、C作射线AD的垂线BE和CF,垂足分别为E、F,量出BE、CF、EF的长,改变D的位置,再重复上面的操作,你是否发现BE、CF、EF的长度之间有某种关系?能说清其中的奥妙吗?
如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.
已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.