如图,抛物线的顶点为M,对称轴是直线x=1,与x轴的交点为A(-3,0)和B.将抛物线绕点B逆时针方向旋转90°,点M1,A1为点M,A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.(1)写出点B的坐标及求抛物线的解析式:(2)求证:∠AMA1=180°(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.如果存在,请求出点P的坐标及四边形PM1MD的最大面积;如果不存在,请说明理由.
、如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF. 证明:(1)CF=EB.(2)AB=AF+2EB
如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC. 求证:(1)AM⊥DM;(2)M为BC的中点.
在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E. (1)若∠ABE=40°,求∠EBC的度数; (2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.
(6分) 如图已知△ABC, (1)分别画出于△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2; (2)求△ABC的面积.
抛物线与x轴交于A ,B两点,且点A在点B的左侧,与y轴交于点C。 (1)当OB=OC时,求此时抛物线函数解析式; (2)当为等腰三角形时,求m的值; (3)若点P与点Q在(1)中抛物线上,求的值.