已知椭圆:的离心率,原点到过点,的直线的距离是.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
已知x,y,z均为正数,求证:++≥++.
用分析法证明:当x>1时,x>ln(1+x).
用分析法证明:当x>0时,sinx<x.
已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.
若a,b,m,n都为正实数,且m+n=1.求证:≥m+n.