已知椭圆:的离心率,原点到过点,的直线的距离是.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
已知矩阵A=,求点M(﹣1,1)在矩阵A﹣1对应的变换作用下得到的点M′坐标.
已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量.(Ⅰ)求矩阵A的逆矩阵;(Ⅱ)计算A3的值.
已知矩阵A=(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为,,求矩阵A的逆矩阵A﹣1.
已知矩阵M=,N=,且MN=.(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.