已知为等比数列,其前项和为,且().(1)求的值及数列的通项公式;(2)设,设的前项和,求不等式的解集.
用砖砌墙,第一层(底层)用去了全部砖块的一半多一块,第二层用去了剩下的一半多一块,…依次类推,每一层都用去了上次剩下的砖块的一半多一块,到第十层恰好把砖块用完,问共用了多少块?
设函数的定义域为,当时,,且对任意的实数,有. ⑴求,判断并证明函数的单调性; ⑵数列满足,且 ①求通项公式; ②当时,不等式对不小于的正整数恒成立,求的取值范围.
已知为数列的前项和,,. ⑴设数列中,,求证:是等比数列; ⑵设数列中,,求证:是等差数列; ⑶求数列的通项公式及前项和. 【解题思路】由于和中的项与中的项有关,且,可利用、的关系作为切入点.
已知等差数列与等比数列中,,求的通项.
观察下面由奇数组成的数阵,回答下列问题: ⑴求第六行的第一个数; ⑵求第20行的第一个数; ⑶求第20行的所有数的和.