在中,角,,所对的边分别为,,,且满足.(1)若,求的面积;(2)若,求的最小值.
(本小题满分12分) 已知点C(4,0)和直线P是动点,作垂足为Q,且设P点的轨迹是曲线M。 (1)求曲线M的方程; (2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且若存在,求出直线m的方程;若不存在,说明理由。
.(本小题满分12分)已知函数,。 (1)若函数y=f(x)的切线斜率的最小值为1,求实数a的值; (2)若两个函数图象有且只有一个公共点,求实数a的取值范围。
(本小题满分12分) 已知等差数列{an}中a2=8,S10=185. (1)求数列{an}的通项公式an; (2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An.
(本小题满分12分) 天水一中对其网络服务器开放的4个外网络端口的安全进行监控,以便在发现黑客入侵时及时跟踪锁定。根据跟踪调查发现,这4个网络端口各自受到黑客入侵的概率为0.1,求: (1)恰有3个网络端口受到黑客入侵的概率是多少? (2)至少有2个网络端口受到黑客入侵的概率是多少?
(本小题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线PA与BF所成角的正切值。 (2)求证:EF⊥平面PCD。