在直角坐标系中,曲线的参数方程为,(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点到上点的距离的最小值.
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB. (1)求证:平面PAB⊥平面PCB; (2)求证:PD∥平面EAC.
已知直线,点. (1)求过点A且平行于的直线的方程; (2)求过点A且垂直于的直线的方程.
已知二次函数. (1)若,试判断函数零点个数 (2)若对且,,证明方程必有一个实数根属于。 (3)是否存在,使同时满足以下条件①当时, 函数有最小值0;;②对任意实数x,都有。若存在,求出的值,若不存在,请说明理由。
已知函数, 其中为常数,且函数图像过原点. 求的值; (1)证明:函数在[0,2]上是单调递增函数; (2)已知函数, 求g(x)≥0时x的取值范围。.
如图,正方形的边长为1,正方形所在平面与平面互相垂直,是的中点. (1)求证:平面; (2)求证:; (3)求三棱锥的体积.