已知直线与椭圆相交于两点.(1)若椭圆的离心率为,焦距为,求线段的长;(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.(Ⅰ)证明:PA⊥平面ABCD;(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.
在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A,B.若点的坐标为(3,),求与.
已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.
已知为复数,为纯虚数,,且,求.
(本小题满分12分)已知,其中是自然常数,(1)讨论时, 的单调性、极值;(2)求证:在(1)的条件下,;(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.