如图1,在直角梯形中,,是的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥.(Ⅰ)证明:平面;(Ⅱ)当平面平面时,四棱锥的体积为,求的值.
如图, 在直三棱柱中,,,点是的中点, (1)求证:; (2)求证:; (3)求直线与平面所成角的正切值.
已知关于的方程. (1)若方程表示圆,求实数的取值范围 ; (2)若圆与直线相交于两点,且,求的值
已知向量 (1)求和; (2)为何值时,向量与垂直; (3)为何值时,向量与平行。
已知=(2asin2x,a),=(-1,2sinxcosx+1),O为坐标原点,a≠0,设f(x)=·+b,b>a。 (1)若a>0,写出函数y=f(x)的单调递增区间; (2)若函数y=f(x)的定义域为[,π],值域为[2,5],求实数a与b的值。
已知函数。 (1)若,求函数的值; (2)求函数的值域。