选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为,且点A在直线上.(1)求a的值及直线的直角坐标方程;(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
如图,在四棱锥中,平面PAD⊥平面ABCD, ,,E是BD的中点.(Ⅰ)求证:EC//平面APD;(Ⅱ)求BP与平面ABCD所成角的正切值;(Ⅲ)求二面角的正弦值.
已知等差数列数列的前项和为,等比数列的各项均为正数,公比是,且满足:.(Ⅰ)求与;(Ⅱ)设,若满足:对任意的恒成立,求的取值范围.
中,三个内角A、B、C所对的边分别为、、,若,.(Ⅰ)求角的大小;(Ⅱ)已知的面积为,求函数的最大值.
已知函数,设方程有两个实数根(1)若果,设函数的对称轴为,求证:(2)如果的两个实数根相差2,求实数b的取值范围。
(本题满分为15分)如图,焦点在轴的椭圆,离心率,且过点(-2,1),由椭圆上异于点的点发出的光线射到点处被直线反射后交椭圆于点(点与点不重合).(1)求椭圆标准方程;(2)求证:直线的斜率为定值;(3)求的面积的最大值.