已知函数为奇函数.(1)求实数的值;(2)求的值域;(3)若关于的方程无实数解,求实数的取值范围.
设点O为坐标原点,直线l:(参数t∈R)与曲线C:(参数∈R)交于A,B两点. (1)求直线l与曲线C的直角坐标方程; (2)求证:OA⊥OB.
求圆心为A(2,0),且经过极点的圆的极坐标方程.
⊙O1和⊙O2的极坐标方程分别为=4cos,=-4sin. (1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程; (2)求经过⊙O1,⊙O2交点的直线的直角坐标方程.
经过曲线C:(为参数)的中心作直线l:(t为参数)的垂线,求中心到垂足的距离.
在平面直角坐标系xOy中,设P(x,y)是椭圆+y2=1上的一个动点,求S=x+y的最大值.