给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围
(本小题满分12分)已知的图像在点处的切线与直线平行.(1)求a,b满足的关系式;(2)若上恒成立,求a的取值范围;
(本小题满分12分)如图,在△ABC中,|AB|=|AC|=,|BC|=2,以B、C为焦点的椭圆恰好过AC的中点P.(Ⅰ)求椭圆的标准方程;(Ⅱ) 过椭圆的右顶点作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1∶3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC. (Ⅰ)求证:AG⊥平面PCD; (Ⅱ)求证:AG∥平面PEC; (Ⅲ)求点G到平面PEC的距离.
(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:(Ⅰ) 现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;(Ⅱ) 若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
(本小题满分12分)已知等差数列中,为数列的前项和.(1)求数列的通项公式;(2) 若数列的公差为正数,数列满足 , 求数列的前项和